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Abstract

The Whitney project is integrating commodity off-the-shelf PC hardware and soft-
ware technology to build a parallel supercomputer with hundreds to thousands of 
nodes. To build such a system, one must have a scalable software model, and the 
installation and maintenance of the system software must be completely auto-
mated. We describe the design of an architecture for booting, installi ng and config-
uring nodes in such a system with particular consideration given to scalability and 
ease of maintenance. This system has been implemented on a 40-node prototype of 
Whitney and is to be used on the 500 processor Whitney system to be built in 
1998.

1.  Work performed under NASA Contract NAS 2-14303
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1.0 Introduction

Recent advances in “commodity” computer technology have brought the 
performance of personal computers close to that of workstations. In addition, 
advances in “off-the-shelf” networking and operating system technology have 
made it possible to design a parallel system made purely of commodity 
components, using a public domain operating system, at a fraction of the cost of 
MPP or workstation components. The Whitney project, at NASA Ames 
Research Center, attempts to integrate these components in order to provide a 
cost effective parallel testbed.

While the cost/performance benefits of using commodity components may be 
clear, there are also obvious problems in scaling such a system to more than a 
couple of dozen nodes. One of the key issues in building such a system is design-
ing a node installation and management software that scales. This issue, while it 
may seem to be secondary, is in fact vital to building a serviceable and useful 
MPP system. For example, when 100 nodes are delivered, how long does it take 
to integrate and install them. Also, when a node fails, how hard is it to swap in a 
new system to replace it. If it takes 20 minutes to install a new node, it would 
take a week to install a 500 node system. Therefore, we must build a software 
system that is automatic, requires minimal system operator intervention, and 
allows spare nodes to acquire their identity easily. Further, we must do this with-
out requiring the node to have a keyboard or monitor installed, since providing 
these would be expensive and would require prohibitive amounts of space in a 
large system.

In this paper an architecture for such a system is described. This system is 
currently working in the 40-node Whitney prototype and it has been designed to 
be scalable to the next Whitney system, with around 500 nodes. While there are 
likely to be additional scalabili ty issues that will appear as Whitney grows, the 
prototype system works well and is designed in such a way that additional 
capacity can be added if necessary.

The rest of this paper is organized as follows. Section 2 describes the overall 
architecture of Whitney, both hardware and software. In Section 3, trade-offs in 
designing a boot/configuration architecture are described as well as the specific 
architecture design utili zed in Whitney. Finally, Section 4 describes future work 
and additional scalabilit y issues that may be faced in the final Whitney design.

2.0 Whitney System Architecture
As an experiment in using commodity technologies, Whitney is designed to take 
advantage of low cost node hardware as well as public domain software and 
operating systems. To date, we have chosen to use the Linux OS and Intel Pen-
tium Pro processor based systems. However, the architecture of Whitney is not 
dependent on the operating system or on the node hardware. Instead, we concen-
trate on a design that is flexible and that does not rely on any uncommon hard-
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ware or software features. This means that the Whitney design could be built on 
top of almost any UNIX system or Windows NT utili zing any stand alone system 
(i.e., workstation or PC).

2.1 Hardware

The Whitney hardware architecture is shown in Figure 1. Whitney consists of a 

large set of compute nodes, each of which is a small desktop system. Therefore, 
each node contains a hard disk, memory, a floppy drive, etc. Some of these nodes 
have special functions, as determined by Whitney’s system software, and may also 
have additional disk (for I/O nodes), network connections, compiler software, etc. 
The Whitney nodes are all attached using an interconnection network, and files 
reside on either a front end node or on a parallel file system that is built on top of 
the I/O nodes. The target configuration for Whitney is 50 processors in Fiscal Year 
(FY) 1997, 500 processors in FY 1998, and 5000 processors in FY 1999/2000.

Currently, Whitney consists of 36 compute nodes, 3 I/O nodes, and 1 front end 
node. The compute nodes are configured as follows:

• Intel Pentium Pro 200MHz/256K cache

• ASUS P/I -P65UP5 motherboard, Natoma Chipset

• ASUS P6ND CPU board

• 128 MB 60ns DRAM memory

• 2.5 GB Western Digital AC2250 hard drive

• Trident ISA graphics card (used for diagnostic purposes only)

Network

Front End Nodes

I/O Nodes

Compute
Nodes

Compute
Nodes

Figure 1: Whitney system architecture block diagram
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They also contain at least one DEC “ tulip (21140)” based Fast Ethernet card and 
a Myrinet card. The final interconnection network for Whitney is still under 
design. Whitney attempts to deliver the most performance per dollar, so we have 
been evaluating a number of commodity and special purpose networks including 
Fast Ethernet and Myrinet. The ideal network will be scalable to 1000’s of nodes 
and will deliver adequate performance for the lowest cost. For more information 
on this evaluation see [BeN98, PeF97].

The I/O nodes are similar to compute nodes except that they contain 256MB 
RAM, two Pentium Pro processors, and two 9GB SCSI disks. The Front end 
node is a single processor system with 128MB RAM, a 4GB SCSI disk, and a 
second Fast Ethernet connection for routing to the general NAS network and the 
Internet. 

2.2 Operating System Architecture

While the hardware architecture for Whitney is relatively simple, there were 
some major challenges in designing a manageable base software architecture for 
such a large system. First, we had to decide on what type of an operating system 
we would run on each node. If some sort of distributed operating system was uti-
li zed, as in the OSF/1 AD on the Intel Paragon [Int93, Zaj93], there would be a 
large amount of overhead for coordinating system nodes. This would almost cer-
tainly overload the network and result in poor system performance as the system 
scaled to a large number of nodes. Another approach would be to run a small 
bootstrap loader on each node, as in the iPSC/860 [Int91] or SUNMOS [Rie94, 
Whe94] on the Intel Paragon. This approach scales, but leaves the processing 
nodes with limited I/O capabilit y, i.e., the nodes can not open network connec-
tions outside of the machine and nodes can not have local disk or virtual mem-
ory. Another issue that exists with both the distributed OS approach and the 
bootstrap loader approach is maintainability. Neither of these models is utili zed 
in a widely deployed system, so the operating system would have to be built spe-
cifically for Whitney, or ported to Whitney. In addition, we could not benefit 
from the economies of scale derived from using a workstation or PC operating 
system.

The approach that was taken was to utili ze a widely deployed off the shelf UNIX 
based operating system, Linux, on all nodes throughout the system. While the 
basic operating system is consistent, the components installed differ depending 
on node functionality. Compute nodes contain a stripped down version of the 
system, containing only those components needed for running application codes, 
i.e., run-time libraries, shells, debuggers, etc. I/O nodes also have a stripped 
down version of the system, with the addition of the I/O server software. The 
front end systems have all of the necessary compilers, editors, etc., needed to 
build application codes for the compute nodes.

While this basic approach has been used to build scalable systems in the past 
such as the IBM SP-2 and the Meiko CS-2 [CaF96], making such a system 
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maintainable with 100’s (much less 1000’s) of nodes is still difficult. One of the 
main pieces we have chosen to use for integrating the system is the Portable 
Batch System1 (PBS). In its “parallel aware” form, PBS daemons run on each 
node. They start user jobs, make sure jobs complete correctly, enforce resource 
limitations, and measure resource usage. This is far more scalable than a “single 
system image” because only the actual parallel jobs need to be managed as an 
ensemble. Further, it distributes the system management tasks and puts the more 
system oriented functions on the actual node they control while still maintaining 
a central task scheduler.

3.0 Booting, Configuring, and Maintaing Compute Nodes
One of the major scalabilit y bottlenecks in systems such as Whitney is how to go 
from an unconfigured node, as delivered from the manufacturer, to a fully con-
figured compute node. Another problem is; how does one upgrade a compute 
node when a new version of the operating system becomes available? Finally, 
what does one do when a node fails? Whitney’s approach to these problems is to 
treat compute nodes (though not necessarily I/O and front end nodes) as inter-
changeable components. Every node has exactly the same operating system and 
system software on their hard disk, and other than two files which contain the 
node’s identity, there is no way to distinguish between nodes. This makes main-
tenance much easier. When a node fails one can simply replace it with another 
one, only the two files must be changed. Then, hardware failures can be diag-
nosed after the bad node has been replaced, leaving the main system functional. 
However, there are still many problems that need to be solved for this approach 
to work.

3.1 Loading and configuring node software

Assuming you have 500 PCs; how do you make them Whitney nodes? The 
software could be loaded off of a CDROM, floppies, or the network. A CDROM 
would work, but then you would have to build a custom CDROM for Whitney 
and each node would need its own drive (unless if you wanted to move a portable 
drive 500 times). Floppies are not practical because it would require dozens to 
load a functional system. The answer, of course, is to install through the network, 
which is already attached to every node. However, to make this system 
manageable, we still need to ensure that nodes can be installed with the minimal 
amount of operator intervention. For example, if it takes an operator 1 minute per 
node it requires 8.5 hours to install a 500 node system, if it takes 10 minutes per 
node it will t ake 3.5 days. Therefore, Whitney nodes should be able to install and 
configure themselves automatically. Install ing and configuring nodes 
automatically on a network is quite possible, but in order to do so, the server 
must be able to tell the identity of a node in order to set its two unique files 
correctly and to prevent network address conflicts.

1.  For more information see http://science.nas.nasa.gov/Software/PBS
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One approach is to burn some unique identifier in to the system’s ROM. This 
information can then be exchanged with the server to determine the node’s 
identity (e.g., the UNIX “BOOTP” protocol). This approach works, but it 
requires someone to create hundreds of unique ROMs. Instead of these unique 
system ROMs, one could use ethernet addresses (which are unique identifying 
numbers burned in to ROM) to identify a node. Unfortunately, the problem with 
both of these approaches is that the system administrator will be forced to 
manage a list of hundreds (or thousands) of obscure numbers. When a node fails, 
the operator would have to change a number in some table with the identifier of 
the spare to be swapped in, or the ROM or ethernet card from the failed node 
would have to be swapped with the spare. This poses a major impediment to 
system maintainability, and the initial configuration of the system would be 
daunting.

Another approach is to dynamically assign node identity. Then, as nodes come 
on line they could be assigned their network address and that address wil l last 
only until they are turned off or go down. The server would manage a pool of 
addresses and allocate/deallocate them as necessary. This approach scales well , 
however, it has one major drawback. That is, when a node fails, how do you tell 
which node is down? Normally, the way a node failure is detected is when a node 
stops responding to the network. If node addresses are dynamically assigned, 
there is no way to tell where a node resides physically from its network address. 
This is less of a problem with a small system, but with hundreds of systems it 
would be virtually impossible to troubleshoot node failures if node addresses are 
not static.

The final approach, which was adopted for Whitney, is to have a device that 
identifies a node that can be easily moved between systems (i.e., it does not 
require the system’s case to be opened). When a node fails, one must simply 
move this device to the new system and it will magically take on the identity of 
the failed node. One such device is a ROM that can be attached through a 
parallel or serial port (e.g., a software lock like the HASP1). The problem is that 
these are expensive and they would require some sort of custom “BOOTP” style 
server. We have still not eliminated this approach as a possibility, but for the 
early stages of Whitney, we instead decided to use a 3.5” floppy disk as the 
uniquely identifying device. This has several advantages. Floppies are cheap and 
easily created. We can even use Whitney nodes to create their own floppies or 
new floppies for other systems. Second, floppies can hold real files, so we 
actually store the two unique node files on the floppy and they can simply be 
copied to the Whitney node upon booting. Finally, if you also use this floppy for 
booting, the system can be booted even when there is no data on the system’s 
disk without requiring a special network boot BIOS. There are also some 
disadvantages to floppies. They wear out, they can be erased or corrupted, and 
we stil l do have to create one for each system as part of the initial system install. 

1.  see http://www.hasp.com
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However these issues are easily overcome with some proactive maintenance 
(i.e., frequent creation of spares and floppy replacement).

Once a node has its identity, installi ng and configuring node hardware is fairly 
simple. Workstations have had this capabilit y for many years. The only special 
requirements that Whitney must adhere to are that the installation process must 
be completely automated. However, this is fairly easy since all nodes are to be 
configured identically. In the next section the actual boot/install /configure 
process implemented on Whitney is described.

3.2 The boot/configure architecture of Whitney

When a node is booted, there are several possibili ties. It can be fully installed 
and configured, it can have some information on its hard disk, but not be fully 
configured, or it can have a blank hard disk. To eliminate the need for operator 
intervention when installi ng Whitney nodes, the Whitney nodes can boot regard-
less of their previous state. If a node has a blank hard disk, a node disk image is 
automatically copied to the node disk. If a node’s disk is valid, the node is re-
configured based on both the node specific information contained on the boot 
floppy and other configuration scripts on the server. A block diagram of this pro-
cess is shown in Figure 2.

Referring to Figure 2, nodes boot from their floppy drive. The floppies must 
therefore contain the most recent kernel as well as the node’s TCP/IP 
configuration information and the Linux bootstrap loader (LILO). Normally 
when linux is booted, only a single device can be specified for the root 
filesystem. Linux therefore boots and attempts to mount root from a partition on 
the first IDE disk /dev/hda. However, because we did not want to assume that 
disks must be configured before booting, we modified the Linux kernel such that 
it will attempt to mount an NFS root if the first attempt to mount a root 
filesystem fails. 

Assume that a disk starts out blank. When Linux attempts to mount it, the mount 
will fail . Then, we instead mount a special NFS root filesystem. This NFS root 
continues to boot and then runs a special install script. The install script first 
checks if a count of the number of unsuccessful installs (stored on the floppy) is 
too high. This prevents nodes from installing forever in the case of a bad disk. If 
this check succeeds, a disk image is copied from the file server on to the root 
filesystem (/dev/hda). This disk image is simply a minimal installation of Red 
Hat Linux without any modifications from what comes off the Red Hat CD. All 
changes to this base image are made in other scripts. By not modifying the CD 
install image, we can easily generate a new disk image, and all changes from this 
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base image are self documented by the scripts that make them. Table 1 
summarizes the names and functions of the various scripts used to configure 
Whitney nodes.

After the initial disk image is copied to the root disk, the “pre-install” script 
performs a generic set of one time configuration changes. These changes are 

Node boots
Linux from 
Floppy

Mount 

Mount
successful

Yes

No

/dev/hda as /

Mount NFS /
from server

How 
Many
Failures

>limit shut down node
(give up)

copy disk image
from server to
/dev/hda

Perform one time
configuration 
Add 1 to failure 
count
Reboot

Copy network
configuration 
from floppy

Apply Whitney
specific changes
to base system

Update kernel
on floppy, reset
failure count

Update system 
files

Node is up!

Figure 2: Whitney node boot time configuration process
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Whitney specific, but are not specific to the particular node being installed. The 
types of changes made at this point are those that are either one time changes that 
can not be repeated, or changes that are needed to make the boot procedure work 
after the root disk is installed. For example, the /usr/admin directory (where 
Whitney specific files are NFS mounted) is created, initial /etc/hosts and 
/etc/passwd files are copied to the root disk, and the “setup-early” script is 
copied to the root disk. Upon completion of the initial node configuration, the 
node is rebooted (now with a valid filesystem on its hard disk).

After the node reboots, the Linux kernel is once again loaded from the node’s 
floppy. However, this time when the system attempts to mount /dev/hda, it 
succeeds. The node then begins booting normally. Before the node’s network 
comes up, it runs the “setup-early” script. This script copies network 
configuration information from the floppy to the node’s hard disk. It also 
performs any other configuration steps that are needed before the node’s network 
comes up (e.g., setting up routing tables).

Finally, the node brings up its network as well as remote (NFS mounted) 
filesystems. Then it runs the “setup-late” script. This script performs any other 
node configuration, and updates all global configuration files and scripts from 
the copies kept on the file server.

The setup-early and setup-late scripts are run every time a node is booted with a 
valid filesystem. Therefore, they must perform their changes in a way that is not 
affected by whether the changes have already been made or not. Further, they 
must replace any files that may have been set incorrectly in the past (e.g., if we 
change a node’s IP address by moving boot floppies, all of the old networking 
files must be replaced with the new ones).

Table 1: Whitney installation scripts

Script
Network

state
Root 

device location Description

pre-install up NFS

install root on 
server 
(located in 
/export/roots)

One time changes and changes 
needed to bootstrap self configura-
tion process.

setup-early down /dev/hda node root disk

Changes needed to configure net-
work, i.e., copy TCP/IP configura-
tion from floppy. Also, floppy 
maintenance (check floppy file sys-
tem, reset install count).

setup-late up /dev/hda
/usr/admin 
NFS filesys-
tem on server

Copy system files from /usr/admin 
to appropriate directories, update 
floppy kernel from /usr/admin, 
make other necessary changes, 
update setup-early script from 
/usr/admin.
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After running “setup-late,” the node is ready and configured. This procedure 
works well i n most cases. However, if nodes become corrupted without actually 
destroying the file system, this may not work. In these cases, an operator must 
intervene, however, the only intervention needed to fix a corrupted node is to 
force it to re-install it self. We do this by booting a special disk that contains a 
small li nux kernel and file system. When this disk boots it runs a script that 
corrupts the first hard drive’s superblock, thus triggering the node to re-install 
itself on the next boot.

Once in operation, if changes need to be made to the compute nodes, these must 
be done in one of the three setup scripts. Then, the change can either be made 
manually or the nodes can be rebooted to make the change. If changes are not 
made in the scripts, they will li kely disappear the next time a node is rebooted. 
While this may seem like a hassle, it enforces careful integration of changes and 
makes the scripts self documenting. This type of careful management of node 
configuration and easy reproducibilit y of changes is vital to operate a large 
system.

4.0 Additional Scalability Issues
The major scalabilit y bottleneck in this design, assuming the network is ade-
quate, is the server. Even with a 40 node system, if all nodes simultaneously try 
to install their internal disks at once the system will fail . To alleviate this prob-
lem, we try to prevent more than 10 nodes from simultaneously installi ng. This, 
however, may be a problem with a larger system because each install takes about 
10 minutes. Therefore, in a larger system it wil l be important to replicate the 
server on several alternate server nodes. Then, depending on the location on the 
system’s network, the nodes must install from one of the multiple servers. This is 
relatively easy since the boot disk not only contains the node’s TCP/IP informa-
tion, but also the address of the node’s boot/install server. The only time this may 
be a problem is if the system does not have all nodes on the same TCP/IP subnet 
with their server. If this is the case, TCP/IP routing must be set up prior to the 
nodes booting. Therefore, it is recommended that in the final Whitney there be at 
least some network in the system that connects nodes to servers without any 
routing.

Another possible bottleneck is in the use of NFS to run user jobs. While it may 
be possible to perform low bandwidth I/O across NFS with 500 nodes, it may not 
work. We will not necessarily be able to determine whether this strategy will 
work until the large system is buil t. If NFS does not work properly, it will be 
necessary to stage user files on to the nodes prior to execution. Also, until the 
parallel file system is available it will be necessary to stage files generated 
during job execution off of the nodes’ local filesystems. Fortunately this facil ity 
is already built in to PBS.
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5.0 Conclusions and Future Work
We have described an architecture for maintaining system software on a com-
modity cluster based system. The system consists of a floppy disk containing a 
node’s kernel and identification information, a server that contains both the ini-
tial installation image for each node as well as updated system configuration 
files, and a set of scripts that keep the nodes’ configuration up to date regardless 
of its previous state. This system is designed for maximal scalabil ity and ease of 
maintenance. While there will li kely be additional issues encountered when 
building the 500 processor Whitney system, this work should form a good basis 
for the final software implementation. 
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